
8 CROSSTALK The Journal of Defense Software Engineering March/April 2009

Bugs plague almost all software sys-
tems. Indeed, more than half the time

spent in a typical software project is on
bug fixing [1]. Given the severe conse-
quences bugs may have and the significant
percentage of project effort associated
with them, tackling bugs is of fundamen-
tal importance.

Defect detection is the primary strate-
gy used to tackle defects, with testing
being the predominant way defect detec-
tion is accomplished. In the past decade,
inspections have been increasingly used to
supplement testing. Still, defects present a
significant problem. The software indus-
try must continue to find new cost-effective
ways to supplement current strategies to
find defects.
This article proposes new approaches to

detect defects. Developers engage in cer-
tain activities, often to detect defects in
their new code. The new approaches are
additions to these activities towards
detecting defects in the existing code.
These additions require little extra effort.
Since defects in the existing code are
detected almost as a by-product of these
activities, they are referred to as by-product
defects (BDs)1. This strategy has resulted
not only in efficient detection of BDs but
also in easier fixing.

I, along with a team at Infosys
Technologies, have been applying these
approaches for the past eight years on
large and complex software systems and
have found hundreds of defects.

Some developers use variations of the
activities discussed in this article, but they
are by no means universally used. Also, we
have not seen a clear articulation of them
in research literature related to software
development. Hence, description of these
activities can be construed as a description
of a set of best practices for software
developers. The primary contribution,
however, is the addition made to these
activities towards detecting BDs.

The primary sections of this article:
• Identify defect consciousness, an impor-

tant ingredient for detection of BDs.

• Describe the activities during which
developers find BDs.

• Relate experiences in deploying the
activities.

Defect Consciousness
By defect consciousness, we mean the
understanding of defects: what they are,
what their types are, how they show up,
what causes them, etc. Novices tend to
lack this knowledge as programming
courses generally do not emphasize this
knowledge vis-à-vis writing programs.
Developers normally gain this knowledge
with experience, but not consciously. That
leads to gaps in their knowledge. Hence, it
is important to gain defect understanding
consciously.

I found certain approaches to be
rather effective in cultivating defect con-
sciousness. Some books and papers focus
on defects (for example, [2]), and are use-
ful for a general understanding of defects.
This understanding should be supple-
mented with defects in specific projects
that developers are working on, as there
are often defect types idiosyncratic to a
project. Projects often have coding and
other guidelines in this regard. While
guidelines tend to be just bland state-
ments, I found that augmenting a guide-
line by pointing at a specific fixed bug
report (as an illustration) has many bene-
fits. As the saying goes, “an example is
better than a precept” [3]. It illustrates a
defect in action: how it looks in code, how
it shows up during execution, how it is
debugged, etc. It helps in recognizing
defects easily. Developers should also
develop a life-long habit of understanding
bug reports fixed by others.

The following activities may detect
defects even without defect conscious-
ness, but they will be more effective cou-
pled with it.

Activities to Detect BDs
This section describes a set of activities
during which BDs may be detected by
developers: reading modules, regular

reviews, triggered reviews, regular unit
testing, and triggered unit testing. The
activities are deployed in a typical industri-
al software development manner with
dozens of developers working on a large
and complex software system.

Description of each activity is orga-
nized as follows:
• What is the activity? 
• When is it done? 
• Why is it done? 
• How is it done? 
• How might BDs be detected as part of

it? 
• How does detecting BDs help the pri-

mary purpose of the activity? 
• Why is it easier to fix BDs compared

to defects detected by other means
(such as traditional testing)? 

Reading Modules
A module is a single file or a collection of
files used to achieve a specific functionali-
ty. Developers should read a module for
two reasons:
• Reading modules for learning.

Reading code is the best (and some-
times the only) way of understanding
the functionality implemented by a
module. For example, in the case of
networking protocols, protocol under-
standing from standards can be clari-
fied and crystallized by reading the
code implementing the protocol.

• Reading modules while working on
a bug or an enhancement. Develop-
ers should completely read those mod-
ules that they are modifying as part of
their work. It helps in not introducing
bugs by making sure that all the
required changes are made for their
work in that module.
Many techniques exist for reading

code [4]. A technique particularly effective
to detecting BDs is active reading [5],
which is a form of critical reading of the
code: read a few lines, try to paraphrase
them in your own words, ask questions,
then try to answer those questions. I have
seen in practice that reading a module

Defect Detection By Developers

Poor quality caused by defects continues to be a major problem facing the software industry. Unlike the traditional way of
handling this problem where testers detect defects, this article suggests approaches where developers detect defects. This approach
builds upon existing techniques, augments certain activities that developers often already engage in, and focuses on detecting
defects in existing code. The end result is little additional effort in defect detection, easier fixes, and enhancing the effectiveness
of the original intention of the activities.

D.T.V. Ramakrishna Rao
Infosys Technologies Limited

 



Defect Detection By Developers

March/April 2009 www.stsc.hill.af.mil 9

once is not enough; reading twice is often
sufficient. Active reading, coupled with
defect consciousness, is very effective in
both understanding code (primary pur-
pose) and in detecting BDs.

When a defect is found while reading
a module, it is much easier to fix com-
pared to a traditional testing-found
defect, for the same reason that inspec-
tion-found defects are easier to fix com-
pared to testing-found defects (one can
find a defect’s location, what kind it is, as
well as its cause) [6].

Comparison With Walkthroughs
Code reading (reading a module) as advo-
cated in this article is a form of review,
walkthrough, or inspection [6]. But there
are notable differences. This section
explores these differences and their impli-
cations.

Predominantly, code walkthroughs are
used as a mechanism to review the imple-
mentation done by a developer. So, I will
first compare walkthroughs and code
reading in the context of a developer
working on an enhancement to the code
base.

A walkthrough is done to detect
defects by a set of reviewers after a devel-
oper completes implementation. In con-
trast, code reading is done to detect
defects by the developer during imple-
mentation. Hence, defects will be found
sooner in code reading.
The intention of the walkthrough is to

detect defects in the enhancement, so the
developer walks the reviewers through his
or her changes of the modules. The walk-
through focuses on the changes to a mod-
ule per se, whereas in code reading, the
focus is on the entire module even when
only a few changes are made to it. The
change in focus helps code reading by
detecting even more defects than walk-
throughs would. A module in a system
might have gone through many modifica-
tions over time. As a module evolves, it
tends to lose unity, becomes more com-
plex, and hinders maintainability. Because
of such evolution, some bugs tend to get
introduced. When reading the whole mod-
ule, there is a higher possibility of detect-
ing those bugs.

Less often, code walkthroughs cover
entire modules for special objectives (e.g.,
security audits). Code reading mainly dif-
fers in the way it is structured to efficient-
ly and simultaneously achieve a novel
combination of objectives: critical under-
standing of a module, detection of defects
in the module (aided by critical under-
standing and defect consciousness), and
ensuring that changes the developer is

making to the module are complete and
consistent (again, aided by critical under-
standing and defect consciousness). I am
unaware of an existing code walkthrough
that achieves the same objectives.

Regular Reviews
Reviews or inspections are used in some
organizations to find bugs in the submit-
ted artifacts [6]. During code reviews,
reviewers try to find bugs in the submitted
code changes with the help of additional
documentation such as checklists and
source documents (e.g., designs and
requirements of the code changes). But
during reviews, they may find bugs not
only in the code changes but also in other
documents. For example, Gilb [6]
observed that inspections often find bugs
in the source documents.

I am not, however, aware of any prior
observations that reviews may find bugs in
code that is not part of the changes. But
indeed, reviews are helpful in finding such
bugs. If code changes show that a func-
tion is modified, reviewers should read
related code surrounding the changes,
functions that call the changed function,
and functions called by the changed func-
tion. Reviewers need to understand the
related code and, in light of that under-
standing, check whether the code changes
have any bugs. For a reviewer with defect
consciousness, the process of understand-
ing the related code using active reading
(as previously discussed) provides oppor-
tunities for uncovering bugs in that code
and help in a more effective review.

BDs found during regular reviews, just

like BDs found during reading modules,
will be easier to fix.

Triggered Reviews 
The reviews in the previous section are
conducted before checking code changes
into the code base; in some instances,
however, there is a need to review code
changes afterwards. Suppose you are mak-
ing changes to your private copy of a code
base while working on a bug or an
enhancement. When multiple developers
are working on the same code base, what
you are doing may be affected by what
others are checking into, in turn necessi-
tating further changes. Therefore, you
should go through each of the check-ins
and review those that are related to your
changes carefully.

Unfortunately, it is not always easy to
know when a check-in is related to your
change. From experience, I’ve found the
following check-ins require careful review:
• Check-ins that modify the modules

you’ve changed. It is very important
to scrutinize such check-ins, as they
are very likely to affect your changes.
You are also in a good position to
review those check-ins because of the
familiarity with the changed modules
(having followed the first activity:
reading modules).

• Check-ins that modify the subsys-
tems you’ve changed. Large com-
plex systems are normally divided into
subsystems, which in turn are divided
into modules. For example, in a net-
working system, transmission control
protocol implementation may consti-
tute a subsystem. If a check-in modi-
fies the subsystem you are changing, it
is likely to affect your changes.

• Check-ins that modify the subsys-
tems you depend upon. Software
systems normally have a set of subsys-
tems that are utilitarian in nature. They
are often organized as libraries (e.g., a
string-processing library). The rest of
the system uses these subsystems.
Changes to these subsystems tend to
be rare but are not totally unheard of.
If a check-in modifies such a subsys-
tem that you are using, you need to
update your changes. Moreover, all the
changes to utility subsystems should
be studied for continuing education on
the project, as these subsystems are
frequently used.

• Check-ins related to your subpro-
ject. Large enhancements tend to be
implemented by multiple developers as
subprojects. If your changes are part
of a subproject, you should actively
review all of the check-ins in the sub-

“A walkthrough is
done to detect

defects by a set of
reviewers after a

developer completes
implementation.
In contrast, code

reading is done to
detect defects by the

developer during 
implementation.”



Reinforcing Good Practices

10 CROSSTALK The Journal of Defense Software Engineering March/April 2009

project for three reasons. First, the
check-in may be directly or indirectly
related to your changes. Second, being
part of the subproject means that you
are in a good position to review the
check-ins. Third, most subprojects are
such that you may be working on yet
another part of the subproject imme-
diately after completing your current
part. Hence, it is important to keep
track of the design and implementa-
tion of the subproject on a continuous
review basis.
The first step of reviewing a needed

check-in is to understand the code
changes made by it, and then assessing its
impact on your changes. For a reviewer
with defect consciousness, the process of
understanding the checked-in code using
active reading also provides opportunities
for uncovering defects in that code.

BDs found during triggered reviews,
just like BDs found during reading mod-
ules, will be easier to fix.

Regular Unit Testing 
While modifying software, developers can
also conduct unit tests to detect bugs in
their changes. Their testing can be charac-
terized by two aspects:
• Tunnel vision. They tend to concen-

trate only on the behavior of their
changes.

• Focus on end results. The tests are
often conducted simply to verify the
outputs.
This type of unit testing is not very

effective in uncovering bugs for two rea-
sons.

First, it is not only important to check
the output but also to check the entire
processing that led to the output.
Sometimes, intermediate processing may
be incorrect, but the final result may turn
out to be correct. For example, in a pro-
gram if either function A or B returns
true, further processing is undertaken.
For a particular input, both the functions
should return true but, due to a bug,
function B returns false—yet the final

result is as expected. Hence, the bug went
undetected. These bugs in the intermedi-
ate processing may manifest in the future.

The second issue involves changes in
large and complex systems: Developers
may not be aware of the repercussions of
their changes in other parts of the system.

More effective unit testing would take
these two points into account. Develop-
ers should go through the processing of
changed modules in minute detail either
using a debugger in single-stepping mode
or enabling tracing on the modules (a
module supports tracing by printing
debug output of its processing in great
detail). To observe the impact of the
changes on the rest of the system, enable
the log messages at all levels and asser-
tion checking on the entire system.

Developers should analyze the previ-
ously mentioned processing details and
the messages produced by the system for
anomalies (defect consciousness will aid
here). Every anomaly needs to be ana-
lyzed to check whether it represents a
bug, and (if so) whether it is pre-existing
or if it was introduced by the developer’s
changes. If the anomaly is not a bug, it
should enhance the understanding of the
system for the developer. If the anomaly
is a bug introduced by the developer, it
obviously needs to be fixed. If the anom-
aly is an existing bug, the developer has
found the bug and should open a bug
report. The report should include the
analysis already done to fix the bug faster
in the future.

The enhanced unit testing helps both
in detecting existing bugs in the system
and in more effectively detecting bugs
made by a developer.

Triggered Unit Testing 
The activity described in this section
applies in the same context as described
in the Triggered Reviews section: The
new check-ins may affect the changes
being made. That section suggested
reviewing the check-ins in this context.
However, reviews may not catch all of
the interactions that may exist between
the check-ins and your changes. This is
when testing becomes useful. Empiri-
cally, testing and reviews are shown to be
complementary in their defect detection
abilities [7].

After merging the check-ins with your
changes, do not make any further
changes to the code. Run a representative
set of passed tests that you previously
used for testing your changes (an applica-
tion of regression testing in a develop-
ment context). If the test fails, investigate
to distinguish between two possibilities:

Your code may need to be updated (in
light of the check-ins), or there is a bug in
the check-ins.

Of course, if your code needs to be
updated, do so immediately. And, even if
it represents a bug in the check-ins, the
investigation already conducted is a good
starting point for fixing the bug. There-
fore, the complete investigation details
should be a part of your bug report in
order to fix the bug faster in the future.

Case Study
The described activities have been
applied in multiple projects in our orga-
nization and have helped in finding hun-
dreds of BDs. To show the benefits of
these activities, I present a case study.

This case study shows the results of
applying the activities by a single devel-
oper in a span of two years while
enhancing and fixing bugs on a very
large software system. The developer
had about five years of experience at the
beginning of the case study. The system
was a C/C++ based mature networking
software system having more than 50
million lines of code and was maintained
by more than 100 people. The develop-
ment process is typical of industrial soft-
ware development. When a developer is
enhancing or fixing a bug, he or she will
do unit testing and submit the imple-
mentation to peer review. After the
review, code is checked-in. When all
enhancements and bug fixes for a release
are in place, the testing team conducts
integration testing and system testing.

Table 1 shows the distribution of
BDs detected as a result of applying the
activities by the developer. When the
developer applied the activities, the
detected defects were found in both the
developer’s new code and the existing
code (BDs). Table 1 shows only BDs
and not the defects detected by the
developer in the new code. The BDs
represent defects detected that leaked
from the described formal stages of
defect detection. For example, BDs
detected by triggered review and trig-
gered testing are missed by unit testing
and peer review.

In all, the developer detected 67
defects. Reviewing code is found to be
particularly effective. Almost half of the
defects were detected during reading mod-
ules and about 75 percent were detected in
some form of reviews. Triggered activities
detected 27 percent of the BDs. Two main
reasons accounted for their success: divi-
sion of large enhancements into pieces to
be done by multiple developers, and fre-

1

Activity No. of 
Bugs

Percent

Reading Modules 32 48

Regular Reviews 7 10

Triggered Reviews 12 18

Regular Unit 
Testing

10 15

Triggered Unit 
Testing

6 9

Total 67 100

Table 1: Bugs Found by the Activities



Defect Detection By Developers

March/April 2009 www.stsc.hill.af.mil 11

quent modification of certain modules.
Testing activities, however, should not be
discounted; testing-detected defects,
though fewer, tended to be of higher
severity.

The case study shows that, using the
activities, a developer can actually detect
existing bugs in the system—just like a
tester. More importantly, these defects are
missed by formal stages of defect detec-
tion. The number of defects detected by
the developer is of the same order as
detected by a test engineer in the same
timeframe. It is as if a test engineer was
acquired for free!

Conclusion
This article discussed a set of activities for
developers to detect defects in their new
code, and augmented the activities to detect
defects in existing code (BDs). This strate-
gy has resulted in the following advantages:
• Detecting defects with little additional

effort.
• Easier fixing of these defects com-

pared to defects found during tradi-
tional testing.

• Enhancing the primary purpose of the
activities that are augmented to detect
BDs.
The current deployment of these

activities falls far short of their potential
utility. For more effective deployment, this
article provides a starting point:
Developers should enhance their defect
consciousness and follow the activities as
described. For long-term retention of
these activities, they should be integrated
with the development methodologies.

From a larger perspective, this article
makes a small contribution regarding how
developers may contribute more towards
the quality of products. The current devel-
opment methodologies do not fully utilize
the expertise of developers in detecting
defects. Proposed here are some strategies
to utilize their knowledge. The techniques
discussed basically fall into two categories:
review and testing. There are many
chances/reasons for developers to read or
test code. Every such chance should be
exploited to detect defects in the existing
code, just as was done in this article.u

Acknowledgment
The author sincerely thanks the
CrossTalk Editorial Board, Kasey
Thompson, Piyush Jain, Saravana Prasad,
Thomas George, and Lilly Vasanthini for
their comments on earlier versions of this
article.

References
1. McConnell, Steve. Professional Soft-

ware Development. Boston: Addison-
Wesley, 2003.

2. Ploski, Jan, et al. “Research Issues in
Software Fault Categorization.” ACM
SIGSOFT Software Engineering
Notes 32(6): 6, 2007.

3. Answers.com. “Example Is Better
Than Precept.” 2008 <www.answers.
com/topic/example-is-better-than-pre
cept>.

4. Laitenberger, Oliver, and Jean-Marc
DeBaud. “An Encompassing Life
Cycle Centric Survey of Software
Inspection.” The Journal of Systems
and Software 50(1): 5-31, 2000.

5. Clayton, Richard, Spenser Rugaber,
and Linda Wills. On the Knowledge
Required to Understand a Program.
Proc. of the 5th Working Conference
on Reverse Engineering. Honolulu,
12-14 Oct. 1998: 69-78.

6. Gilb, Tom, Dorothy Graham, and
Susannah Finzi. Software Inspection.
Boston: Addison-Wesley, 1993.

7. Jalote, Pankaj, and M. Haragopal.
Overcoming the NAH Syndrome for
Inspection Deployment. Proc. of the
20th International Conference on
Software Engineering. Kyoto, Japan,
19-25 Apr. 1998: 371-378.

Note
1. BDs are so named not because they

are introduced as a by-product of
some activity, but because they are
detected as a by-product of an activity.

About the Author

D.T.V. Ramakrishna
Rao is a senior technical
architect at Infosys Tech-
nologies Limited, in Ban-
galore, India. He has 14
years of experience in

industrial software development with a
primary focus on building high-end net-
working systems. He has published 10
papers in networking and defect analysis.
He holds a master’s degree in computer
science from the Indian Institute of
Technology in Kanpur, India.

Infosys Technologies Limited
44 Electronics City, Hosur RD
Bangalore – 560 100
India
Phone: 91-80-41166508
Fax: 91-80-28521695
E-mail: ramakrishnadtv@

infosys.com

May 4-6
Sea – Air – Space 2009
National Harbor, MD
www.seaairspace.org

May 4-7
SATURN 2009 Conference

Pittsburgh, PA
www.sei.cmu.edu/architecture/

saturn/2009

May 4-8
Software Testing Analysis & Review

Orlando, FL
www.sqe.com/stareast

May 11-12
2009 IEEE International Conference on

Technologies for Homeland Security
Waltham, MA

www.ieeehomelandsecurity
conference.org

June 1-4
DoD Enterprise Architecture

St. Louis, MO
www.afei.org/brochure/9a05/

June 8-12
Better Software Conference & EXPO

Las Vegas, NV
www.sqe.com/bettersoftwareconf

June 15-19
SIGMETRICS/Performance 2009

Seattle, WA
http://conferences.sigmetrics.org/

sigmetrics/2009

June 28-July 3
21st Annual FIRST Conference

Kyoto, Japan
http://conference.first.org

2010
Systems and Software 
Technology Conference 

Salt Lake City, UT
www.stc-online.org

COMING EVENTS


